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It follows f rom considerat ions of the relationship between the power dissipated in an arc  and the en-  
t ropy  developed that in the case of s tat ionary states which are  charac te r ized  by the minimum of entropy 
generation, the power dissipated in an arc  discharge does not reach its minimum [1]. A class  of states 
was found which can be used for calculating the conditions in the arc  discharge with the  aid of a variat ional  
technique based upon the formal  variat ion of power. 

The Steenbeck minimum principle [2] is known in the theory of hot arcs :  at a given current  I of the 
a rc  and at a fixed t empera tu re  T k at the walls of the discharge chamber,  we have 

s e  = 0 (1 )  

where E denotes the e lec t r ic  field strength in the arc  (the field strength is constant in the volume of a d.c. 
a rc  channel with cylindrical  symmetry) .  

It was attempted in [1] to show that the variat ion condition (1) resul ts  f rom t~e thermodynamic  principle 
of minimum generation of entropy 0: 

60 = 0 ( 2 )  

To this end, the relation between the generation of entropy a and the power N dissipated in the arc  
was used (Guy-Stodal l  Law): 

N = Tk0 (3)  

Variation of Eq. (3) with p roper  regard  for Eq. (2) led to the conclusion that the dissipation is mini- 
mal in a stat ionary arc :  

~N = 0 (4)  

When we now use the relation between the dissipation and the field strength of the e lec t r ic  field in 
the arc  

N = IEl (5) 

where l denotes the fixed length of the discharge,  we obtain condition (1) f rom Eqs. (4) and (5). 

This procedure was based upon the validity of the variation of Eq. (3). Obviously, for this operation 
to be admissible, Eq. (3) must be interpreted as identity of two functionals which are given on some finite 
set of functions. 

In the thermodynamics  of i r revers ib le  p roces se s  (see, e.g. [3]), the generation of the entropy 0 is 
considered a functional which is given on a set of t empera tu re  distributions T(x, y, z) or T(r) when the sys-  
tem has cylindrical  symmetry .  When external boundary conditions of the form 

z (R) = r~ (constant cooling of walls) 
dT / dr[r ~ = 0 ( symmet ry  condition) (6) 

are imposed upon a thermodynamic  system which is a cylinder of radius R, we can assume an innumerable 
set of t empera tu re  distributions T(r) which satisfy Eq. {6). The minimum principle of entropy generation 
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states that in the s ta t ionary state, the tempera ture  distribution Ts(r  ) for which the generation of the entropy 
0 (considered to be a functional) has an ext remum will be real ly  observed. This is t rue,  because the E u l e r -  
Lagrange equation of the variat ional  problem of determining the extremum is the stationary equation of the 
energy balance (the E l l e n b a a s - H e l l e r  equation in the case of an arc). Any other distribution T(r) which 
satisfies Eq. (6) and is close to Ts(r) corresponds  to some nonstationary state of the thermodynamic  sys -  
tem, with the sys tem gradually t r ans forming  into the stat ionary state Ts(r) in the course of time. 

This means that the region in which 0 is defined is equal to any distribution T(r), i.e., nonstationary 
as well as stat ionary distributions; the generation of the entropy 0 has an extremum in the stationary state. 
The Validity of Eq. (3) was proved in [1] only for the s tat ionary state, and therefore ,  Eq. (3) so far  only 
states the fact that the two functionals are  equal for a single t empera tu re  distribution Ts(r).  In view of what 
has been said above, the variat ion of Eq. (3) does not make sense. It was shown in [4] that the conclusions 
of [1] are  wrong. 

In o rde r  to use the ex t remum proper t ies  of entropy generation for  the purpose of drawing conclusions 
on the behavior of the dissipated power N in the stationary state, we must consider the identity relation be-  
tween N and 0, which is also valid, for the nonstationary states of the arc.  In order  to determine this re la -  
tion, we must use an explicit expression for  the generation of the entropy 0. When only thermal  conductivity 
and electr ic  conductivity a re  i r revers ib le  p r o c e s s e s  in an a rc  with cyl indrical  symmetry ,  then, in a c c o r -  
dance with [2], we have 

I [  (W-grad T) (j-E) ]dV (7) 
0 = --  T~ + T .] 

where W denotes the vec tor  of the heat flux density; j denotes the e lectr ic  current  density; and the in tegra-  
tion is pe r fo rmed  over  the entire volume of the system. 

For  this  case, the nonstat ionary equation of the energy balance assumes  the form 

0T 
pc ~ = -- div W + (j.E) (8) 

where  p denotes the density, and c, the specific heat of the gas of the arc. We can use Eq, (8) to rewri te  

Eq. (7) as  follows: 

F WgradT , divWl ['/ OT t \ 
0 = j L -  - - - V - -  * - - W - J  dV + ~ ~p~ - ~ -  T )  dV (9) 

Since the expression under the f i rs t  integral of Eq. (9) is equivalent to div(W/T), we can use the 
Gauss theorem and the condition that the tempera ture  is constant at the boundary of the arc.  We obtain 

1 O = _ ~ I ( d i v W ) d V + I i p  c OT f \ - ~ -  --T-) dV (10) 

After  eliminating div W f rom Eq. (10) with the aid of Eq. (8) and taking into account that 

= ~ (j. E) N dV (11) 
d 

we finally obtain 

-- - - ~ )  d~ ; (12) 

Eq. (12) is a general izat ion of Eq. (3) to the case of a rb i t ra ry  nonstationary states. Naturally, in the 

case of a stat ionary state, we have 

(ar l  ot)~ = o (13) 

in the entire volume of the system, and Eq. (12) becomes Eq. (3). 

The following detail must be mentioned. Though the generation of the entropy 0 is considered a 
functional which is given on the set of all possible t empera tu re  distributions (amongthem nonstationary t e m -  
pera tu re  distributions), 0 depends explicitly only upon the charac te r i s t i c s  of the states p roper  but is inde- 
pendent of the rate  of change of these  states in the course  of t ime. It follows f rom Eq. (12) that the diss ipa-  
tion N depends upon the distributions T(r) proper ,  as well as upon the spatial distribution of the derivat ives 
OT/0 t  (r) which can have any form [the derivat ives  must satisfy Eq. (8), but this was taken into account in 

the derivation of Eq. (12)]. 
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By vary ing  condition (12) with p r o p e r  r e g a r d  for  Eqs. (2) and (13), we obtain 

- - ~ d v  (14) 

Since it is always poss ib le  to imagine a state of the sy s t em close t o t h e  s ta t ionary  state for  which the 
der iva t ive  ~ T / ~ t  (r) c o n s e r v e s  its sign for  all  r ,  we have in pa r t i cu l a r  for  the cor responding  var ia t ion  6 
( a T / ~ t )  

(SN) s :# 0 (15) 

i .e. ,  the s ta t ionary  nonequi l ibr ium distr ibution of the t e m p e r a t u r e  does not provide  an e x t r e m u m  of the 
power  N to be d iss ipa ted  in the s ta t ionary  state,  though the generat ion of the ent ropy 0 has an e x t r e m u m  in 
th is  state.  

Neve r the l e s s ,  Eq. (12) al lows an implici t  de terminat ion  of the c l a s s  of s ta tes  for  which Eq. (3) holds 
as  an identity. It follows f r o m  Eq. (12) that  the cor responding  t e m p e r a t u r e  dis t r ibut ions must  sa t is fy  the 
condition 

which, in view of Eq. (8), can be rewr i t ten  in the fo rm 

f [(].E)-- div W] (t  - - - -~-)  dV = 0 (17) 

Thus,  it has been shown that  even when the pr inc ip le  of min imum generat ion of entropy holds, the 
power  d iss ipa ted  in the s ta t ionary  s ta te  of the a rc  is not a min imum compared  with the power  d iss ipa ted  
in nonsta t ionary  s t a t e s  which a re  close to the s ta t ionary  state.  This  conclusion is con t r a ry  to that  of [1]. 
However ,  s ince Eq. (2) is for  cer ta in  r e s t r i c t i ons  equivalent to the E l l e n b a a s - H e l l e r  equation, a var ia t iona l  
approach to the calculation of the s ta t ionary  conditions of an a r c  d ischarge  is poss ib le  when the p r inc ip le  
of the min imum of ent ropy generat ion is employed.  The fact  that the power  d iss ipa ted  has an e x t r e m u m  
value can also be employed in the f o r m  of Eq. (4), though this  is not poss ib le  for  any t e m p e r a t u r e  d i s t r ibu-  
t ion but only for  t e m p e r a t u r e  dis t r ibut ions  sa t is fying condition (17). In pa r t i cu la r ,  it is easy  to show that  
t e m p e r a t u r e  dis t r ibut ions  cor responding  to  the approximat ion of the "channel" model of the a r c  column 
(see,  e.g. [2]) sa t is fy  condition (17). 
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